Pada saat ini mangga Indonesia sangat diminati oleh orang asing terlebih untuk mangga kualitas unggul seperti mangga manalagi dan gadung. Akan tetapi tak jarang masyarakat tidak mengerti atau keliru mengenali varietas mangga yang mereka tanam. Selama ini identifikasi atau pengenalan varietas mangga dilakukan dengan menggunakan mata. Hal ini pun dibutuh keahlian atau pakar dalam membedakan varietas mangga tersebut. Akan tetapi orang yang ahli mempunyai keterbatasan, tidak semua varietas mangga dapat dikenali atau diidentifikasi. Terdapat beberapa usulan model yang telah dilakukan untuk mengindentifikasi mangga dengan citra digital akan tetapi akurasi yang dihasilkan masih kurang yaitu di bawah 80 %. Selain itu masing masing peneliti hanya menggunakan satu fitur citra yaitu fitur tekstur. Penelitian ini mengunakan dataset sebanyak 300 citra daun mangga, 150 citra daun mangga varietas manalagi dan 150 citra daun gadung. Metode yang digunakan pada penelitian ini yaitu Backpropagation Neural Network (BPNN) dengan menggunakan fitur bentuk dan tekstur daun mangga. Model BPNN yang paling optimal pada penelitian ini yaitu menggunakan hidden layer = 19, learning rate = 0.9, momentum = 0.9 dan epoch = 100 dengan hasil root mean squar error (RMSE) = 0.0018. Kemudian hasil dari pengujian menggunakan citra daun mangga menghasilkan tingkat akurasi 96 %.
                        
                        
                        
                        
                            
                                Copyrights © 2020