Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI)
Vol 8, No 2 (2022): June

Tuberculosis Detection in X-Ray Image Using Deep Learning Approach with VGG-16 Architecture

Suci Aulia (Telkom University)
Sugondo Hadiyoso (Telkom University)



Article Info

Publish Date
18 Jul 2022

Abstract

Tuberculosis (TB) is a chronic disease still the main problem in Indonesia. However, this disease can be cured with drugs at a particular time after the patient is detected as having TB. TB diagnosis or screening can be made through x-ray imaging of the chest cavity by a radiology specialist. The Mantoux test can then be used to confirm the diagnosis.  X-ray images often have varying contrasts that lead to true negatives or false negatives. Whereas generally, a chest x-ray is the initial examination of TB. Error detection will have a fatal impact on treatment therapy. Therefore, this study proposed a system for TB detection based on x-ray images using deep learning. The system developed uses a Convolutional Neural Network (CNN) with the VGG-16 architecture. In the performance test stage, 700 normal and 140 TB chest x-ray images were used. The simulation results show that the proposed system can classify normal and TB lungs with an accuracy of 99.76%. The highest accuracy is achieved using batch size=50. This system is expected to assist radiology in detecting tuberculosis on X-Ray images of the lungs. The contribution of this study is to build a machine learning model for TB detection and optimization of model parameters to get the best accuracy.

Copyrights © 2022






Journal Info

Abbrev

JITEKI

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

JITEKI (Jurnal Ilmiah Teknik Elektro Komputer dan Informatika) is a peer-reviewed, scientific journal published by Universitas Ahmad Dahlan (UAD) in collaboration with Institute of Advanced Engineering and Science (IAES). The aim of this journal scope is 1) Control and Automation, 2) Electrical ...