CESS (Journal of Computer Engineering, System and Science)
Vol 7, No 2 (2022): July 2022 - In Process

Feature Selection Using Eigen Vector to Improve K-Means Clustering

Nugroho Syahputra (Universitas Sumatera Utara)
Muhammad Zarlis (Universitas Sumatera Utara)
Syahril Efendi (Universitas Sumatera Utara)



Article Info

Publish Date
19 Jul 2022

Abstract

Banyaknya jumlah atribut data set dari proses pengelompokan data dengan K-Means Clustering dapat mempengaruhi besaran jumlah iterasi yang dihasilkan. Pada riset ini, Eigen Vector digunakan untuk melakukan seleksi fitur pada data set. Data set yang telah diseleksi selanjutnya dilakukan proses clustering dengan K-Means Clustering. Data set yang digunakan pada riset ini adalah Wine Quality Dataset yang diperoleh dari UCI Machine Learning Repository, dengan 11 atribut ,4898 records data dan 7 kelas atribut. Hasil dari riset ini menunjukkan bahwa rata-rata jumlah iterasi yang diperoleh dari perbandingan pengujian dengan menggunakan K-Means tanpa seleksi fitur yaitu diperoleh rata-rata sebesar 21 iterasi, sedangkan K-Means dengan seleksi fitur Eigen Vector diperoleh rata-rata sebesar 15 iterasi. Evaluasi clustering dihitung menggunakan Davies-Bouldin Index (DBI). Nilai DBI pada K-Means Clustering tanpa seleksi fitur yaitu sebesar 0.746667, sedangkan pada K-Means Clustering dengan Eigen Vector yang telah diseleksi sebanyak 5 atribut diperoleh nilai rata-rata DBI masing-masing sebesar 0.664316.

Copyrights © 2022






Journal Info

Abbrev

cess

Publisher

Subject

Computer Science & IT

Description

CESS (Journal of Computer Engineering, System and Science) contains articles on research results and conceptual studies in the fields of informatics engineering, computer science and information systems. The main topics published include: 1. Information security 2. Computer security 3. Networking & ...