ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika
Vol 10, No 3: Published July 2022

Multi-Abnormal ECG Signal Classification using Dispersion Entropy and Statistic Feature

DEWI, ERVIN MASITA (Unknown)
AULIA, SUCI (Unknown)
HADIYOSO, SUGONDO (Unknown)



Article Info

Publish Date
19 Jul 2022

Abstract

ABSTRAKElektrokardiogram (EKG) adalah salah satu perangkat medis yang paling banyak digunakan untuk mendiagnosis masalah jantung. Sinyal abnorma EKG mempunyai variasi dan beberapa mirip antara yang satu dengan lainnya. Oleh karena itu, pada penelitian ini diusulkan metode klasifikasi kelainan jantung berdasarkan EKG menggunakan fitur statistik orde satu dan Dispersion Entropy (DisEn) untuk tahap ekstraksi ciri. Sedangkan untuk tahap klasifikas sinyal EKG multi-abnormal, kami membandingkan metode Support Vector Machine (SVM) dan K-Nearest Neighbor (KNN). Pada penelitian ini diklasifikasikan tujuh kelas EKG, yaitu Normal, Atrial Fibrillation (AFIB), Atrial Flutter (AFL), Atrial Premature Beats (APB), Begiminy, Left Bundle Branch Block (LBBB), dan Premature Ventricular Contraction (PVC). Dari simulasi ini, sistem dapat mendeteksi sinyal normal dan abnormal dengan akurasi 85,1% menggunakan K-NN. Sementara itu, pada simulasi klasifikasi tujuh kelas sinyal EKG menghasilkan akurasi hingga 75.1%.Kata kunci: EKG, klasifikasi, Dispersion Entropy, statistik ABSTRACTElectrocardiogram (ECG) is one of the most widely used medical devices to diagnose heart disease. Abnormal ECG signals have variations and some are similar to another. Therefore, in this study, proposed a method for classifying cardiac abnormalities based on ECG using first-order statistical features and Dispersion Entropy (DisEn) for feature extraction. Meanwhile, for the multiabnormal ECG signal classification stage, we compared the Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) methods. In this study, seven ECG classes were classified, namely Normal, Atrial Fibrillation (AFIB), Atrial Flutter (AFL), Atrial Premature Beats (APB), Begiminy, Left Bundle Branch Block (LBBB), and Premature Ventricular Contraction (PVC). From this simulation, the system can detect normal and abnormal signals with an accuracy of 85.1% using K-NN. Meanwhile, the classification simulation of seven classes of ECG signals produces an accuracy of up to 75.1%.Keywords: ECG, classification, Dispersion Entropy, statistics

Copyrights © 2022






Journal Info

Abbrev

elkomika

Publisher

Subject

Electrical & Electronics Engineering Engineering

Description

Jurnal ELKOMIKA diterbitkan 3 (tiga) kali dalam satu tahun pada bulan Januari, Mei dan September. Jurnal ini berisi tulisan yang diangkat dari hasil penelitian dan kajian analisis di bidang ilmu pengetahuan dan teknologi, khususnya pada Teknik Energi Elektrik, Teknik Telekomunikasi, dan Teknik ...