Journal of Fundamental Mathematics and Applications (JFMA)
Vol 3, No 2 (2020)

PRINCIPAL COMPONENT DAN K-MEANS CLUSTER ANALYSIS UNTUK DATA SPEKTRUM BLACK TEA GRADES GUNA PENILAIAN KUALITAS ALTERNATIF

Aditya Toraismaya (Program Studi Matematika, Universitas Kristen Satya Wacana)
Leopoldus Ricky Sasongko (Program Studi Matematika, Universitas Kristen Satya Wacana)
Ferdy Semuel Rondonuwu (Program Studi Matematika, Universitas Kristen Satya Wacana)



Article Info

Publish Date
23 Nov 2020

Abstract

The aim of this article is to apply the method to measure or evaluate the sampling quality of black tea in determining its category or class based on the spectrum of the sampled data. The number of the spectrum of the variable of data reduced by the Principal Components Analysis (PCA) method becomes a new variable that will be classified later by using K-Means Clustering method. This research use 120 sample of tea from Fanning II (F-II), Pekoe Fanning (PFANN), and Broken Orange Pekoe Fannings (BOPF) with 90 sample used for training and 30 sample used for validation. The method and the analysis used in this research gave effective and efficient performance in measuring/evaluating the quality of the black tea sample to determine its class as it showed that the accuracy of K-Means Clustering results is larger than 50%.

Copyrights © 2020






Journal Info

Abbrev

jfma

Publisher

Subject

Decision Sciences, Operations Research & Management

Description

Journal of Fundamental Mathematics and Applications (JFMA) is an Indonesian journal published by the Department of Mathematics, Diponegoro University, Semarang, Indonesia. JFMA has been published regularly in 2 scheduled times (June and November) every year. JFMA is established to highlight the ...