Leibniz: Jurnal Matematika
Vol. 2 No. 2 (2022): Leibniz: Jurnal Matematika

Penerapan Klasifikasi Naive Bayes dengan Algoritma Random Oversampling dan Random Undersampling pada Data Tidak Seimbang Cervical Cancer Risk Factors

Prasetya, Jus (Unknown)



Article Info

Publish Date
25 Jul 2022

Abstract

Machine learning adalah cabang ilmu komputer yang memanfaatkan pengalaman (peristiwa) pada masa lalu untuk dipelajari dan menggunakan pengetahuannya untuk membuat keputusan di masa depan. Pada machine learning, proses klasifikasi dilakukan untuk meminimalkan kesalahan klasifikasi maka dengan demikian akan memaksimalkan akurasi prediksi. Asumsi yang mendasari metode klasifikasi ini adalah bahwa data yang diteliti memiliki jumlah sampel yang seimbang setiap kelas yang tersedia. Random Oversampling adalah proses resamplingnya dengan cara memilih sampel dari kelas minoritas secara acak, sampel yang dipilih secara acak ini kemudian diduplikasi dan ditambahkan ke set pelatihan baru. Random Undersampling adalah proses resampling dengan sampel pada kelas mayoritas dalam set pelatihan dihilangkan secara acak sampai rasio antara kelas minoritas dan mayoritas berada pada tingkat yang diinginkan. Nilai AUC yang didapatkan pada klasifikasi naive bayes sebesar 0,5325 yang berarti klasifikasi gagal. Nilai AUC yang didapatkan pada klasifikasi random oversampling-naive bayes sebesar 0,62 yang berarti klasifikasi buruk. Nilai AUC yang didapatkan pada klasifikasi random undersampling-naive bayes sebesar 0,7013 yang berarti klasifikasi cukup baik.

Copyrights © 2022






Journal Info

Abbrev

leibniz

Publisher

Subject

Mathematics

Description

Ruang lingkup artikel ilmiah yang dapat diterbitkan dalam Jurnal Leibniz ini adalah sebagai berikut: Geometri dan Aplikasinya, Teori Graf dan Aplikasinya, Riset Operasi dan Aplikasinya, Sistem Dinamik dan Aplikasinya, Model Matematika dan Aplikasinya, Teori Kontrol dan Aplikasinya, Aljabar dan ...