Journal of Informatics and Computer Science (JINACS)
Vol 3 No 03 (2022)

Identifikasi Citra Daun Tanaman Herbal Menggunakan Metode Convolutional Neural Network (CNN)

Rosida Pujiati (Universitas Negeri Surabaya)
Naim Rochmawati (Universitas Negeri Surabaya)



Article Info

Publish Date
28 Jan 2022

Abstract

Sebagian masyarakat Indonesia memanfaatkan sumber bahan obat tradisional dan obat alam secara turun-temurun. Sumber bahan obat tradisional dan obat alam tersebut didapatkan dari tanaman herbal. Tanaman herbal diketahui memiliki senyawa tertentu sehingga dapat berkhasiat bagi kesehatan. Banyak spesies tanaman herbal memiliki kemiripan yang tinggi sehingga sulit untuk membedakannya. Dengan begitu, sistem pengenalan tanaman otomatis akan bermanfaat untuk membantu masyarakat dalam mengidentifikasi tanaman herbal. Sistem identifikasi pada penelitian ini menggunakan metode Convolutional Neural Network. Metode CNN merupakan suatu metode Deep Learning yang dapat digunakan untuk mengidentifikasi serta mengklasifikasikan sebuah objek pada citra digital. Penelitian ini menggunakan 33 kelas tumbuhan herbal. Dataset yang digunakan yaitu 21.450 citra tumbuhan herbal, dimana dataset tersebut dibagi menjadi 16.500 training, 3.300 validasi, dan 1.650 testing. Pada proses training dan validasi dilakukan sebanyak 150 epoch, yang mendapatkan akurasi tertinggi sebesar 94% dengan loss terendah 0,28. Untuk nilai akurasi pada proses testing sebesar 84%, dengan mengidentifikasi 1.382 citra daun tanaman herbal secara benar dari total 1.650 citra yang ada.

Copyrights © 2022






Journal Info

Abbrev

jinacs

Publisher

Subject

Computer Science & IT

Description

JINACS (Journal of Informatics and Computer Science) diterbitkan oleh Program Studi S1 Teknik Informatika Universitas Negeri Surabaya dalam empat kali setahun dengan No ISSN Online : 2686-2220 JINACS merupakan jurnal ilmiah dalam bidang Teknik Informatika dan Computer Science. Jurnal ini mencakup ...