Prosiding Seminar Nasional Sisfotek (Sistem Informasi dan Teknologi Informasi)
Vol 5 No 1 (2021): SISFOTEK V 2021

Implementasi Metode K-Means Untuk Clustering Data Penduduk Miskin Dengan Systematic Random Sampling

Rafli Junaidi Kasim (Universitas AMIKOM Yogyakarta)
Samsul Bahri (Universitas AMIKOM Yogyakarta)
Syukirman Amir (Universitas AMIKOM Yogyakarta)



Article Info

Publish Date
25 Sep 2021

Abstract

The poor population grouping aims to differentiate the population with the highest or the most appropriate level of poverty to get assistance specifically for the population with the highest level of poverty. Grouping is done by using the k-means method. Grouping with the k-means method will increase the level of similarity in groups and reduce the level of similarity between groups. Random grouping on k-means will be applied systematic random sampling methods that will influence and narrow down the possibility of many initial centroid values ??to be generated, while speeding up the computation process for random grouping. Furthermore, the silhouette coefficient is validated to determine the best group in grouping the poor population. The number of groups determined is 2 clusters, 3 clusters, and 4 clusters. The results obtained are the number of groups of 2 clusters is better than 3 clusters and 4 clusters with a value of 2 clusters namely 0.435489, while in 3 clusters 0.434857 and 4 clusters 0.30832.

Copyrights © 2021






Journal Info

Abbrev

SISFOTEK

Publisher

Subject

Computer Science & IT

Description

Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK) merupakan ajang pertemuan ilmiah, sarana diskusi dan publikasi hasil penelitian maupun penerapan teknologi terkini dari para praktisi, peneliti, akademisi dan umum di bidang sistem informasi dan teknologi dalam artian ...