CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS
Vol 2, No 1 (2021): CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS

Analisa Pewarnaan Total r-Dinamis pada Graf Lintasan dan Graf Hasil Operasi

Desi Febriani Putri (Universitas Jember)
Dafik Dafik (Universitas Jember)
Kusbudiono Kusbudiono (Universitas Jember)



Article Info

Publish Date
22 Jun 2021

Abstract

Graph coloring began to be developed into coloring dynamic. One of the developments of dynamic coloring is $r$-dynamic total coloring. Suppose $G=(V(G),E(G))$ is a non-trivial connected graph. Total coloring is defined as $c:(V(G) \cup E(G))\rightarrow {1,2,...,k}, k \in N$, with condition two adjacent vertices and the edge that is adjacent to the vertex must have a different color. $r$-dynamic total coloring defined as the mapping of the function $c$ from the set of vertices and edges $(V(G)\cup E(G))$ such that for every vertex $v \in V(G)$ satisfy $|c(N(v))| = min{[r,d(v)+|N(v)|]}$, and for each edge $e=uv \in E(G)$ satisfy $|c(N(e))| = min{[r,d(u)+d(v)]}$. The minimal $k$ of color is called $r$-dynamic total chromatic number denoted by $\chi^{\prime\prime}(G)$. The $1$-dynamic total chromatic number is denoted by $\chi^{\prime\prime}(G)$, chromatic number $2$-dynamic denoted with $\chi^{\prime\prime}_d(G)$ and $r$-dynamic chromatic number denoted by $\chi^{\prime\prime}_r(G)$. The graph that used in this research are path graph, $shackle$ of book graph $(shack(B_2,v,n)$ and \emph{generalized shackle} of graph \emph{friendship} $gshack({\bf F}_4,e,n)$. 

Copyrights © 2021






Journal Info

Abbrev

cgant

Publisher

Subject

Computer Science & IT Other

Description

Subjects suitable for publication include, the following fields of: Degree Diameter Problem in Graph Theory Large Graphs in Computer Science Mathematical Computation of Graph Theory Graph Coloring in Atomic and Molecular Graph Labeling in Coding Theory and Cryptography Dimensions of graphs on ...