CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS
Vol 2, No 1 (2021): CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS

Metric Dimension dan Non-Isolated Resolving Number pada Beberapa Graf

Wahyu Nikmatus Sholihah (Universitas Jember)
Dafik Dafik (Universitas Jember)
Kusbudiono Kusbudiono (Universitas Jember)



Article Info

Publish Date
22 Jun 2021

Abstract

Let $G=(V, E)$ be a set of ordered set $W=\{W_1,W_2, W_3,...,W_k\}$ from the set of vertices in connected graph $G$. The metric dimension is the minimum cardinality of the resolving set on $G$. The representation of $v$ on $W$ is $k$ set. Vector $r(v|W)=(d(v, W_1), d(v, W_2), ...,$ $d(v, W_k))$ where $d(x, y)$ is the distance between the vertices $x$ and $y$. This study aims to determine the value of the metric dimensions and dimension of {\it non-isolated resolving set} on the wheel graph $(W_n)$. Results of this study shows that for $n \geq 7$, the value of the metric dimension and {\it non-isolated resolving set} wheel graph $(W_n)$ is $dim(W_n)=\lfloor \frac{n-1}{2} \rfloor$ and $nr(W_n)=\lfloor \frac{n+1}{2}\rfloor$. The first step is to determine the cardinality vertices and edges on the wheel graph, then determine $W$, with $W$ is the resolving set $G$ if {\it vertices} $G$ has a different representation. Next determine {\it non-isolated resolving set}, where $W$ on the wheel graph must have different representations of $W$ and all $x$ elements $W$ is connected in $W$. 

Copyrights © 2021






Journal Info

Abbrev

cgant

Publisher

Subject

Computer Science & IT Other

Description

Subjects suitable for publication include, the following fields of: Degree Diameter Problem in Graph Theory Large Graphs in Computer Science Mathematical Computation of Graph Theory Graph Coloring in Atomic and Molecular Graph Labeling in Coding Theory and Cryptography Dimensions of graphs on ...