Mathematics and Applications (MAp) Journal
Vol 4, No 1 (2022)

DETEKSI OUTLIERS DAN ANALISIS INTERVENSI DALAM MODEL ARMA

Umi Yuliatin (Unknown)



Article Info

Publish Date
30 Jun 2022

Abstract

Adanya kehadiran outliers dalam analisisi runtun waktu mengaburkan estimasi parameter model yang diberikan. Selain itu outlier juga memberi dampak besaran eror yang lebih tinggi. Dalam analisis time series Additive outliers (AO)  dan innovational outliers (IO) diperkenalkan sebagai usaha dalam memodelkan outliers. Usaha ini diberikan untuk menangani obserbasi yang tidak mengharmoniskan pola data sehingga membantu untuk dibentuknya model runtun waktu yang sehat terutama dalam proses ARMA. Estimator linier square error (LSE) digunakan untuk mengestimasi besarnya penyimpangan dari model dasarnya. Prosedur iterative dipaparkan sebagai salah satu prosedur untuk mendeteksi kedua model outliers ini.  Diperkenalkan juga analisis intervensi yang digunakan untuk mengakomodasi kejadian luar sebagai variabel eksogen dalam proses ARMA. Kemudian kombinasi analisis ourliers-intervensi ini bisa digunakan sebagai kesatuan analisis untuk menangani data yang jauh dari pusat. Sebagai simulasi data dalam kasus ini adalah data PDRB D.I Yogyakarta dalam bidang pertambangan dan penggalian. Dalam analisis ini  ditunjukkan deteksi outlier didalam model memberikan jumlahan kuadrat eror yang lebih kecil dibandingkan dengan model tanpa deteksi outlier sedemikian sehingga diperoleh model yang lebih baik.

Copyrights © 2022






Journal Info

Abbrev

MAp

Publisher

Subject

Mathematics

Description

MAp Journal memuat artikel yang diangkatkan dari hasil penelitian di bidang matematika baik teori maupun ...