CCIT (Creative Communication and Innovative Technology) Journal
Vol 15 No 2 (2022): CCIT JOURNAL

Classification of Public Complaints Basedon Text Mining Using Modified K-Nearest Neighbor, Naïve Bayes and C4.5 Algorithm

Samsul Bahri (AMIKOM University Yogyakarta)
Ema Utami (AMIKOM University Yogyakarta)
Asro Nasiri (AMIKOM University Yogyakarta)



Article Info

Publish Date
04 Aug 2022

Abstract

To improve public services, accuracy and acceleration are needed in classifying the types of complaints so that complaints can immediately get a response from the relevant regional apparatus. This public complaint data is in text form and is not balanced in each category of regional apparatus, so we contribute to research to compare the performance of different text mining-based classification algorithms. In addition, we also tested the resampling method to overcome imbalanced data. In the final stage, testing is carried out using a multiclass confusion matrix table to show accuracy, precision, recall, and f1-score. The test results show the highest value in the Naïve Bayes algorithm with the ComplementNB model without resampling data, which is 89.58% accuracy, 86.72% precision, 82.40% recall, 84.09% f1-score. However, all scores decreased when combined with SMOTE resampling of 83.66% accuracy, 67.79% precision, 80.35% recall, 71.68% f1-score. ComplementNB can be an alternative model in the classification of public complaints with imbalanced datasets

Copyrights © 2022






Journal Info

Abbrev

ccit

Publisher

Subject

Computer Science & IT

Description

CCIT (Creative Communication and Innovative Technology) Journal adalah jurnal ilmiah yang diterbitkan olehSekolah Tinggi Manajemen Informatika dan Komputer Raharja. CCIT terbit dua kali dalam satu tahun, Setiap Bulan Februari dan ...