MATICS : Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology)
Vol 1, No 1 (2014): Matics

MEMBANGUN GAUSSIAN CLASSIFIER DALAM MENGENALI OBJEK DALAM BENTUK IMAGE

Santoso, Irwan Budi (Unknown)



Article Info

Publish Date
01 Mar 2014

Abstract

Distribusi Multivariate Normal (Gaussian) adalah salah satu distribusi yang sering digunakan, mengingat hampir semua kejadian bisa didekati dengan distribusi tersebut. Dalam mengenali suatu objek dalam bentuk image, fitur objek tersebut kerapkali mengikuti distribusi Multivariate Gaussian dengan parameter mean dan covariance yang berbebeda-beda. Parameter dan yang berbeda-beda tersebut akan menghasilkan nilai probability density function (pdf) yang berbeda pula. Berdasarakan nilai probability density function ini selanjutnya dapat dibentuk fungsi diskriminan untuk mengenali objek (Gaussian Classifier). Kehandalan Gaussian Classifer dalam mengenali objek dalam bentuk image dipengaruhi oleh 2 faktor utama yaitu ketepatan dan keakuratan dalam pengambilan data objek training yang akan berpengaruh terhadap ketepatan dan keakuratan fitur yang diambil dan asumsi distribusi Multivariate Normal dari fitur objek yang diambil harus terpenuhi. Untuk memenuhi asumsi multivariate distribusi Multivariate Normal maka harus dilakukan pengujian terhadap normalitas distribusi fitur setiap kelas objek. Kata Kunci :  Distribusi Gaussian, Parameter Distribusi, Probability Density Function, Fungsi Diskriminan

Copyrights © 2014






Journal Info

Abbrev

saintek

Publisher

Subject

Computer Science & IT

Description

MATICS is a scientific publication for widespread research and criticism topics in Computer Science and Information Technology. The journal is published twice a year, in March and September by Department of Informatics Engineering, Faculty of Science and Technology, Universitas Islam Negeri Maulana ...