JOMLAI: Journal of Machine Learning and Artificial Intelligence
Vol. 1 No. 3 (2022): September

Implementation of One-step Secant Algorithm for Forecasting Open Unemployment by Highest Educational Graduate

Ismi Azhami (STIKOM Tunas Bangsa, Pematangsiantar, Indonesia)
Eka Irawan (STIKOM Tunas Bangsa, Pematangsiantar, Indonesia)
Dedi Suhendro (STIKOM Tunas Bangsa, Pematangsiantar, Indonesia)



Article Info

Publish Date
18 Oct 2022

Abstract

Based on data, the open unemployment rate according to the highest education graduate in Indonesia shows the number of semester unemployment which has an unstable value, sometimes up and sometimes down. This study aims to implement the ability and performance of one of the training functions on the backpropagation algorithm, namely one-step secant, which can later be used as a reference in terms of data forecasting. The one-step secant algorithm is an algorithm that is able to train any network as long as the input, weight and transfer functions have derivative functions and this algorithm is able to make training more efficient because it does not require a very long time. The data used in this study is open unemployment data according to the highest education completed in Indonesia in 2006-2021 based on semester, which is sourced from the Indonesian Central Statistics Agency. Based on this data, a network architecture model will be formed and determined using the One-step secant method, including 14-13-2, 14-16-2, 14-19-2, 14-55-2, and 14-77- 2. From these 5 models, after training and testing, the results show that the best architectural model is 14-19-2 (14 is the input layer, 19 is the number of neurons in the hidden layer and 2 is the output layer). The accuracy level of the architectural model for semester 1 and semester 2 is 75% with MSE values of 0.00130797 and 0.00388535.

Copyrights © 2022






Journal Info

Abbrev

jomlai

Publisher

Subject

Computer Science & IT Engineering

Description

Focus and Scope JOMLAI: Journal of Machine Learning and Artificial Intelligence is a scientific journal related to machine learning and artificial intelligence that contains scientific writings on pure research and applied research in the field of machine learning and artificial intelligence as well ...