JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH)
Vol 3 No 4 (2022): Juli 2022

Depression Detection on Social Media Twitter Using Hierarchical Attention Network Method

Raihan Nugraha Setiawan (Telkom University, Bandung)
Warih Maharani (Telkom University, Bandung)



Article Info

Publish Date
31 Jul 2022

Abstract

Mental illness, including depression, is not a mild condition that only some mentally weak people experience. Technology is developing so rapidly, especially communication technology through social media. Twitter is a very popular social media today. Users can easily quickly and simply communicate all the feelings they are experiencing through tweets, which allows us to find information about emotional feelings to the level of user depression. Auto-mated analysis of social media has the potential to provide a method for early detection. This study aims to predict early signs of depression using data from social media Twitter. The method used in this research is classification by analyzing social media sentiment using the Hierarchical Attention Network. Classification using the Hierarchical Attention Network method was chosen because the method showed outstanding results for classifying texts in previous studies. The classification model in this study that represents the best accuracy, 74%, was performed by applying the Hierarchical Attention Network.

Copyrights © 2022






Journal Info

Abbrev

josh

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Artikel yang dimuat melalui proses Blind Review oleh Jurnal JOSH, dengan mempertimbangkan antara lain: terpenuhinya persyaratan baku publikasi jurnal, metodologi riset yang digunakan, dan signifikansi kontribusi hasil riset terhadap pengembangan keilmuan bidang teknologi dan informasi. Fokus Journal ...