During the construction of the Jakarta-Bandung high-speed train, many Indonesian people gave their responses to the public. The answers were also varied, with some giving positive and negative reactions. The purpose of this study is to analyze the sentiments of the responses given by the public to the construction of the Jakarta-Bandung high-speed train on Indonesian-language Twitter. To perform sentiment analysis, tweet data was collected utilizing data crawling based on keywords related to the construction of the Jakarta-Bandung high-speed train and given positive, negative, and neutral labels and then represented into numbers using the Keras tokenizer. The method used for sentiment classification of tweet data is the Recurrent Neural Networks method. The highest accuracy results were obtained using the GRU architecture with an accuracy of 69.62%.
Copyrights © 2022