Computer Science and Information Technologies
Vol 3, No 3: November 2022

Text classification to predict skin concerns over skincare using bidirectional mechanism in long short-term memory

Devi Fitrianah (Bina Nusantara University)
Andre Hangga Wangsa (Universitas Mercu Buana)



Article Info

Publish Date
01 Nov 2022

Abstract

There are numerous types of skincare, each with its own set of benefits based on key ingredients. This may be difficult for beginners who are purchasing skincare for the first time due to a lack of knowledge about skincare and their own skin concerns. Hence, based on this problem, it is possible to find out the right skin concern that can be handled in each skincare product automatically by multi-class text classification. The purpose of this research is to build a deep learning model capable of predicting skin concerns that each skincare product can treat. By comparing the performance and results of predicting the correct skin condition for each skincare product description using both long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM), The best results are given by Bi-LSTM, which has an accuracy score of 98.04% and a loss score of 19.19%. Meanwhile, LSTM results have an accuracy score of 94.12% and a loss score of 19.91%.

Copyrights © 2022






Journal Info

Abbrev

csit

Publisher

Subject

Computer Science & IT Engineering

Description

Computer Science and Information Technologies ISSN 2722-323X, e-ISSN 2722-3221 is an open access, peer-reviewed international journal that publish original research article, review papers, short communications that will have an immediate impact on the ongoing research in all areas of Computer ...