Journal of Soft Computing Exploration
Vol. 3 No. 2 (2022): September 2022

Analysis of public opinion sentiment against COVID-19 in Indonesia on twitter using the k-nearest neighbor algorithm and decision tree

Pambudi, Ryo (Unknown)
Madani, Faiq (Unknown)



Article Info

Publish Date
30 Sep 2022

Abstract

COVID-19 has become an ongoing disease pandemic across the globe. The need for information makes social media such as twitter a place to exchange information. This tweet can be used to see public sentiment towards COVID-19 in Indonesia. Sentiment analysis classifies opinions from tweets that have been processed and classified into different sentiments, namely negative, neutral, or positive. The aim of this paper is to find the algorithm that has the best accuracy. The researcher proposes to compare the K-Nearest Neighbors (KNN) and decision tree algorithms to be used in the classification of sentiment data from tweets related to COVID-19 that took place in Indonesia. The results of the evaluation of performance metrics concluded that the decision tree algorithm has a higher level of accuracy than KNN. Decision tree produces accuracy = 0.765, error = 0.235, recall = 0.76, and precision = 0.767 which is better when compared to KNN which produces accuracy = 0.69, error = 0.31, recall = 0.66, and precision = 0.702.

Copyrights © 2022






Journal Info

Abbrev

joscex

Publisher

Subject

Computer Science & IT

Description

Journal of Soft Computing Exploration is a journal that publishes manuscripts of scientific research papers related to soft computing. The scope of research can be from the theory and scientific applications as well as the novelty of related knowledge insights. Soft Computing: Artificial ...