International Journal of Electrical and Computer Engineering
Vol 12, No 6: December 2022

Robusta coffee leaf diseases detection based on MobileNetV2 model

Yazid Aufar (Politeknik Hasnur)
Tesdiq Prigel Kaloka (Politeknik Hasnur)



Article Info

Publish Date
01 Dec 2022

Abstract

Indonesia is a major exporter and producer of coffee, and coffee cultivation adds to the nation's economy. Despite this, coffee remains vulnerable to several plant diseases that may result in significant financial losses for the agricultural industry. Traditionally, plant diseases are detected by expert observation with the naked eye. Traditional methods for managing such diseases are arduous, time-consuming, and costly, especially when dealing with expansive territories. Using a model based on transfer learning and deep learning model, we present in this study a technique for classifying Robusta coffee leaf disease photos into healthy and unhealthy classes. The MobileNetV2 network serves as the model since its network design is simple. Therefore, it is likely that the suggested approach will be deployed further on mobile devices. In addition, the transfer learning and experimental learning paradigms. Because it is such a lightweight net, the MobileNetV2 system serves as the foundational model. Results on Robusta coffee leaf disease datasets indicate that the suggested technique can achieve a high level of accuracy, up to 99.93%. The accuracy of other architectures besides MobileNetV2 such as DenseNet169 is 99.74%, ResNet50 architecture is 99.41%, and InceptionResNetV2 architecture is 99.09%.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...