International Journal of Electrical and Computer Engineering
Vol 12, No 6: December 2022

Deep learning for cancer tumor classification using transfer learning and feature concatenation

Abdallah Mohamed Hassan (Al-Azhar University)
Mohamed Bakry El-Mashade (Al-Azhar University)
Ashraf Aboshosha (Egyptian Atomic Energy Authority)



Article Info

Publish Date
01 Dec 2022

Abstract

Deep convolutional neural networks (CNNs) represent one of the state-of-the-art methods for image classification in a variety of fields. Because the number of training dataset images in biomedical image classification is limited, transfer learning with CNNs is frequently applied. Breast cancer is one of most common types of cancer that causes death in women. Early detection and treatment of breast cancer are vital for improving survival rates. In this paper, we propose a deep neural network framework based on the transfer learning concept for detecting and classifying breast cancer histopathology images. In the proposed framework, we extract features from images using three pre-trained CNN architectures: VGG-16, ResNet50, and Inception-v3, and concatenate their extracted features, and then feed them into a fully connected (FC) layer to classify benign and malignant tumor cells in the histopathology images of the breast cancer. In comparison to the other CNN architectures that use a single CNN and many conventional classification methods, the proposed framework outperformed all other deep learning architectures and achieved an average accuracy of 98.76%.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...