International Journal of Electrical and Computer Engineering
Vol 12, No 6: December 2022

Recognition of compound characters in Kannada language

Sridevi Tumkur Narasimhaiah (university of Mysore)
Lalitha Rangarajan (University of Mysore)



Article Info

Publish Date
01 Dec 2022

Abstract

Recognition of degraded printed compound Kannada characters is a challenging research problem. It has been verified experimentally that noise removal is an essential preprocessing step. Proposed are two methods for degraded Kannada character recognition problem. Method 1 is conventionally used histogram of oriented gradients (HOG) feature extraction for character recognition problem. Extracted features are transformed and reduced using principal component analysis (PCA) and classification performed. Various classifiers are experimented with. Simple compound character classification is satisfactory (more than 98% accuracy) with this method. However, the method does not perform well on other two compound types. Method 2 is deep convolutional neural networks (CNN) model for classification. This outperforms HOG features and classification. The highest classification accuracy is found as 98.8% for simple compound character classification. The performance of deep CNN is far better for other two compound types. Deep CNN turns out to better for pooled character classes.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...