International Journal of Electrical and Computer Engineering
Vol 12, No 6: December 2022

Comparison analysis of different classification methods of power quality disturbances

Nur Adrinna Shafiqa Zakaria (Universiti Teknologi Malaysia (UTM))
Dalila Mat Said (Universiti Teknologi Malaysia (UTM))
Norzanah Rosmin (Universiti Teknologi Malaysia (UTM))
Nasarudin Ahmad (Universiti Teknologi Malaysia (UTM))
Mohamad Shazwan Shah Jamil (Universiti Teknologi Malaysia (UTM))
Sohrab Mirsaeidi (Beijing Jiaotong University)



Article Info

Publish Date
01 Dec 2022

Abstract

Good power quality delivery has always been in high demand in power system utilities where different types of power quality disturbances are the main obstacles. As these disturbances have distinct characteristics and even unique mitigation techniques, their detection and classification should be correct and effective. In this study, eight different types of power quality disturbances were synthetically generated, by using a mathematical approach. Then, continuous wavelet transform (CWT) and discrete wavelet transform with multi-resolution analysis (DWT-MRA) were applied, which eight features were then extracted from the synthesized signals. Three classifiers namely, decision tree (DT), support vector machine (SVM) and k-nearest neighbors (KNN) were trained to classify these disturbances. The accuracy of the classifiers was evaluated and analyzed. The best classifier was then integrated with the full model, which the performance of the proposed model was observed with 50 random signals, with and without noise. This study found that wavelet-transform was effective to localize the disturbances at the instant of their occurrence. On the other hand, the SVM classifier is superior to other classifiers with an overall accuracy of 94%. Still, the need for these classifiers to be further optimized is crucial in ensuring a more effective detection and classification system.

Copyrights © 2022






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...