IAES International Journal of Robotics and Automation (IJRA)
Vol 11, No 4: December 2022

Trajectory optimization using learning from demonstration with meta-heuristic grey wolf algorithm

Pawlowski, Adam (Unknown)
Romaniuk, Slawomir (Unknown)
Kulesza, Zbigniew (Unknown)
Petrovic, Milica (Unknown)



Article Info

Publish Date
01 Dec 2022

Abstract

Nowadays, most robotic systems perform their tasks in an environment that is generally known. Thus, robot’s trajectory can be planned in advance depending on a given task. However, as a part of modern manufacturing systems which are faced with the requirements to produce high product variety, mobile robots should be flexible to adapt to changing and diverse environments and needs. In such scenarios, a modification of the task or a change in the environment, forces the operator to modify robot’s trajectory. Such modification is usually expensive and time-consuming, as experienced engineers must be involved to program robot’s movements. The current paper presents a solution to this problem by simplifying the process of teaching the robot a new trajectory. The proposed method generates a trajectory based on an initial raw demonstration of its shape. The new trajectory is generated in such a way that the errors between the actual and target end positions and orientations of the robot are minimized. To minimize those errors, the grey wolf optimization (GWO) algorithm is applied. The proposed approach is demonstrated for a two-wheeled mobile robot. Simulation and experimental results confirm high accuracy of generated trajectories.

Copyrights © 2022






Journal Info

Abbrev

IJRA

Publisher

Subject

Automotive Engineering Electrical & Electronics Engineering

Description

Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our ...