Science and Technology Indonesia
Vol. 7 No. 4 (2022): October

Prediction of Ground Surface Deformation Induced by Earthquake on Urban Area Using Machine Learning

Fathoni Usman (Institute of Energy Infrastructure, Universiti Tenaga Nasional, Selangor, 43000, Malaysia)
Nanda (Department of Civil Engineering, Faculty of Engineering, Universitas Putra Indonesia, Padang, 25145, Indonesia)
Josaphat Tetuko Sri Sumantyo (Centre for Environmental Remote Sensing, Chiba University, Chiba, 2638522, Japan)



Article Info

Publish Date
31 Oct 2022

Abstract

Earthquakes can inflict significant damage to structures and infrastructures. This paper presents a machine learning model to predict ground surface deformation (GDS) induced by earthquake events. The data on historical GSD is extracted from radar product of Synthetic Aperture Radar (SAR) data of one-year over five magnitude earthquakes that occurred within 200 kilometers of the Kota Padang Regency, West Sumatra. Building topology data of its footprint area, distance from shoreline, elevation, and coordinate were incorporated as the main features in the dataset. The earthquake parameters were taken from the USGS earthquake data catalog. Four machine learning algorithms of Neural Network (NN), Random Forest (RF), k-Nearest Neighbors (kNN), and Gradient Boosting (GB) are applied. The GSD from the trained models is predicted and compared with the measured GSD from the SAR’s product. The performances of proposed algorithms are evaluated in terms of the statistical index. A new dataset from the earthquake event in March 2022 is used to predict the GSD and further test the performance of the trained models. Overall, the four machine learning algorithms have outstanding performance, with a coefficient determinant of more than 0.9. The kNN algorithm outperforms compared to others in delineating the GSD. The trained models gave deficient prediction performance on the new dataset with a correlation coefficient of 0.228 predicted by the RF algorithm. Additional earthquake datasets and more unique features will improve the performance of the machine learning algorithms.

Copyrights © 2022






Journal Info

Abbrev

JSTI

Publisher

Subject

Biochemistry, Genetics & Molecular Biology Chemical Engineering, Chemistry & Bioengineering Environmental Science Materials Science & Nanotechnology Physics

Description

An international Peer-review journal in the field of science and technology published by The Indonesian Science and Technology Society. Science and Technology Indonesia is a member of Crossref with DOI prefix number: 10.26554/sti. Science and Technology Indonesia publishes quarterly (January, April, ...