Atom Indonesia Journal
Vol 48, No 3 (2022): December 2022

Noise Suppression of Computed Tomography (CT) Images Using Residual Encoder-Decoder Convolutional Neural Network (RED-CNN)

H. B. Cokrokusumo (Department of Physics, Universitas Indonesia)
I. Hariyati (Department of Radiology, Gading Pluit Hospital)
L. E. Lubis (Department of Physics, Universitas Indonesia)
P. Prajitno (Department of Physics, Universitas Indonesia)
D. S. Soejoko (Department of Physics, Universitas Indonesia)



Article Info

Publish Date
27 Nov 2022

Abstract

In this study, an in-house residual encoder-decoder convolutional neural network (RED-CNN)-based algorithm was composed and trained using images of cylindrical polymethyl-methacrylate (PMMA) phantom with a diameter of 26 cm at different simulated noise levels. The model was tested on 21 × 26 cm elliptical PMMA computed tomography (CT) phantom images with simulated noise to evaluate its denoising capability using signal to noise ratio (SNR), comparative peak signal-to-noise ratio (cPSNR), structural similarity (SSIM) index, modulation transfer function frequencies (MTF 10 %) and noise power spectra (NPS) values as parameters. Evaluation of a possible decrease of image quality was also performed by testing the model using homogenous water phantom and wire phantom images acquired using different mAs values. Results show that the model was able to consistently increase SNR, cPSNR, SSIM values, and decrease the integral noise power spectra (NPS). However, the noise level on either training or testing data affects the model’s final denoising performance. The lower noise level on testing data images tends to result in over-smoothed images, as indicated by the shift of the NPS curves. In contrast, higher simulated noise level tends to result in less satisfactory denoising performance, as indicated by lower SNR, cPSNR, and SSIM values. Meanwhile, the higher noise level on training data images tends to produce denoised images with reduced sharpness, as indicated by the decrease of the MTF 10 % values. Further studies are required to better understand the character of RED-CNN for CT noise suppression regarding the optimum parameters for best results.

Copyrights © 2022






Journal Info

Abbrev

aij

Publisher

Subject

Materials Science & Nanotechnology

Description

Exist for publishing the results of research and development in nuclear science and technology Starting for 2010 Atom Indonesia published three times a year in April, August, and December The scope of this journal covers experimental and analytical research in all areas of nuclear science and ...