Bulletin of Electrical Engineering and Informatics
Vol 11, No 5: October 2022

DDoS attack detection in software defined networking controller using machine learning techniques

Abbas Jasem Altamemi (University of Babylon)
Aladdin Abdulhassan (University of Babylon)
Nawfal Turki Obeis (University of Babylon)



Article Info

Publish Date
01 Oct 2022

Abstract

The term software defined networking (SDN) is a network model that contributes to redefining the network characteristics by making the components of this network programmable, monitoring the network faster and larger, operating with the networks from a central location, as well as the possibility of detecting fraudulent traffic and detecting special malfunctions in a simple and effective way. In addition, it is the land of many security threats that lead to the complete suspension of this network. To mitigate this attack this paper based on the use of machine learning techniques contribute to the rapid detection of these attacks and methods were evaluated detecting DDoS attacks and choosing the optimum accuracy for classifying these types within the SDN, the results showed that the proposed system provides the better results of accuracy to detect the DDos attack in SDN network as 99.90% accuracy of Decision Tree (DT) algorithm.

Copyrights © 2022






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...