Building of Informatics, Technology and Science
Vol 4 No 2 (2022): September 2022

The Organization Entity Extraction Telkom University Affiliated using Recurrent Neural Network (RNN)

Muhammad Daffa Regenta Sutrisno (Telkom University, Bandung)
Donni Richasdy (Telkom University, Bandung)
Aditya Firman Ihsan (Telkom University, Bandung)



Article Info

Publish Date
21 Sep 2022

Abstract

In the news portal text, there is a lot of important information such as the name of the person, the name of the organization, or the name of the place. To obtain information in text documents manually, humans must read the contents of the entire news text. To overcome this issue, information extraction, commonly called Named Entity Recognition (NER) was used. The extraction of information expressly for the NER field is used to make it easier to process word or sentence data. It helps search engines and also helps to classify places, times, and organizations. There is a limited number of NER in Indonesian texts using only the Recurrent Neural Network (RNN) method. Similar previous studies only employed other versions of RNN such as LSTM (Long Short Term Memory), BiLSTM (Bidirectional Long Short Term Memory), and CNN (Convolutional Neural Network). NER is one of the answers to the problems that exist in a large number of news portal texts to obtain information effectively and efficiently. The results of this study indicate that the NER system using the RNN method in Indonesian news texts has an F1 -Score of 80%

Copyrights © 2022






Journal Info

Abbrev

bits

Publisher

Subject

Computer Science & IT

Description

Building of Informatics, Technology and Science (BITS) is an open access media in publishing scientific articles that contain the results of research in information technology and computers. Paper that enters this journal will be checked for plagiarism and peer-rewiew first to maintain its quality. ...