Knowledge Engineering and Data Science
Vol 5, No 1 (2022)

Social Distancing Monitoring System using Deep Learning

Amelia Ritahani Ismail (International Islamic University Malaysia)
Nur Shairah Muhd Affendy (International Islamic University Malaysia)
Ahsiah Ismail (International Islamic University Malaysia)
Asmarani Ahmad Puzi (International Islamic University Malaysia)



Article Info

Publish Date
07 Jun 2022

Abstract

COVID-19 has been declared a pandemic in the world by 2020. One way to prevent COVID-19 disease, as the World Health Organization (WHO) suggests, is to keep a distance from other people. It is advised to stay at least 1 meter away from others, even if they do not appear to be sick. The reason is that people can also be the virus carrier without having any symptoms. Thus, many countries have enforced the rules of social distancing in their Standard Operating Procedure (SOP) to prevent the virus spread. Monitoring the social distance is challenging as this requires authorities to carefully observe the social distancing of every single person in a surrounding, especially in crowded places. Real-time object detection can be proposed to improve the efficiency in monitoring the social distance SOP inspection. Therefore, in this paper, object detection using a deep neural network is proposed to help the authorities monitor social distancing even in crowded places. The proposed system uses the You Only Look Once (YOLO) v4 object detection models for the detection. The proposed system is tested on the MS COCO image dataset with a total of 330,000 images. The performance of mean average precision (mAP) accuracy and frame per second (FPS) of the proposed object detection is compared with Faster Region-based Convolutional Neural Network (R-CNN) and Multibox Single Shot Detector (SSD) model. Finally, the result is analyzed among all the models.

Copyrights © 2022






Journal Info

Abbrev

keds

Publisher

Subject

Computer Science & IT Engineering

Description

Knowledge Engineering and Data Science (2597-4637), KEDS, brings together researchers, industry practitioners, and potential users, to promote collaborations, exchange ideas and practices, discuss new opportunities, and investigate analytics frameworks on data-driven and knowledge base ...