Malware is malicious software that can harm, manipulate, steal from victim's device system. Due to the diverse needs of using internet services, security threats are also increasingly difficult to detect. now attackers are starting to develop malware that can change their own signature which is referred to as polymorphism. Therefore, improvements in the traditional approach to detecting the presence of malware are needed to be improved. One of the malware detection approaches, memory-based analysis technique has proven to be a powerful and effective analytical technique in studying malware behavior. In this study, the implementation of a Decision Tree-based classification algorithm was carried out to analyze the data set. Classifier model was created for the purpose of classifying malware based on memory features engineering. The result shows that the Decision Tree machine learning algorithm has been well performed with accuracy to 99.982 %, a false positive rate equal to 0.1% and precision equal to 99.977%
Copyrights © 2022