Corona Virus Disease 2019 (Covid-19) which has hit the world including Indonesia since the beginning of 2020 is an outbreak that has become a serious threat to world health. The Indonesian government is taking various actions to deal with this problem, while the public, with the existence of social media, has provided many responses to these government policies. Twitter is one of the social media that is widely used by the public to convey comments in the form of responses, suggestions, to criticism of the government regarding the handling of Covid-19. The comments that appear should be used by the government as part of the reference in evaluating a policy or action taken in handling Covid-19. So that one way that can be used to deal with this is one of the methods that exist in the domain of text mining, namely sentiment analysis. This research was conducted by analyzing sentiment using the Support Vector Machine (SVM) method with the Kernel Radial Basis Function (RBF). Tweets will be classified into positive, negative and neutral sentiments, so that the percentage of each opinion category can be known. This study uses data of 600 tweets obtained from the results of scraping using a Twitter scraper. The result of this study is that the training accuracy rate is 77% in classifying positive, negative, and neutral sentiments. From the results of the data classification, it was found that most of the tweets consisted of negative sentiments.
Copyrights © 2022