Sriwijaya Journal of Informatics and Applications
Vol 3, No 1 (2022)

Spelling Detection based on P300 Signal with Convolutional Neural Network (CNN) Algorithm

Kgs. M. Rusdiansyah Muharrom (Sriwijaya University)
Rifkie Primartha (Sriwijaya University)



Article Info

Publish Date
05 Jan 2022

Abstract

Brain Computer Interface (BCI) is a system that connects the human brain with the outside world for people who have motor skills disability problems. One form of utilization is the P300 speller which is used for character recognition or detection by classifying the P300 signal. The Convolutional Neural Network (CNN) method is a deep learning method that can be used to handle signal problems with ID-CNN. At the initial stage the data signal will be transformed and followed by a duplication process using RandomOverSampling because the amount of data in each class is not balanced. The data will be divided into training, validation, and test data. After that, a training with CNN will be conducted and followed by an evaluation to find the best model. The test results from this study are a good-fitting CNN model with an evaluation value consisting of an accuracy of 94.27%, precision of 90.64%, sensitivity / recall of 98.30%, and f-measure of 94.31%. Based on the test, the CNN method can be used and implemented in authentication detection based on the P300 signal.

Copyrights © 2022






Journal Info

Abbrev

Publisher

Subject

Description

Sriwijaya Journal of Informatics and Applcations (SJIA) is a scientific periodical researchs articles of the Informatics Departement Universitas Sriwijaya. This Journal is an open access journal for scientists and engineers in informatics and Applcations area that provides online publication (two ...