Jurnal Informatika Upgris
Vol 8, No 2: Desember 2022

Perbandingan Tingkat Akurasi Prediksi Peningkatan Kasus Positif Covid-19 antara Metode Neural Network Backpropagation dan Long Short Term Memory (LSTM)

Agus Alwi Mashuri (STMIK HIMSYA SEMARANG)
Eko Riyanto (STMIK HIMSYA SEMARANG)



Article Info

Publish Date
05 Jan 2023

Abstract

The COVID-19 (Coronavirus) pandemic is likely to be one of the most serious globalproblems in the past year. Countries do not have similar experiences with the spreadof the virus and its effects from various fields. Estimating the number of previous casesof COVID-19 can help make decisions in the form of actions and plans to prevent thevirus. This study aims to provide a forecasting model that predicts confirmed COVID-19 cases in the city of Semarang. This study applies a machine learning algorithm,namely the Recurrent Neural Network (RNN) to predict COVID-19 cases in the city ofSemarang. The process of fine-tuning each model is described in this study andnumerical comparisons between the two models are concluded using differentevaluation measures; mean sequence error (MSE).

Copyrights © 2022






Journal Info

Abbrev

JIU

Publisher

Subject

Computer Science & IT

Description

Journal of Informatics UPGRIS published since June 2015 with frequency 2 (two) times a year, ie in June and December. The editors receive scientific writings from lecturers, teachers and educational observers about the results of research, scientific studies and analysis and problem solving closely ...