Sinkron : Jurnal dan Penelitian Teknik Informatika
Vol. 7 No. 1 (2023): Articles Research Volume 7 Issue 1, 2023

Comparison of Convolutional Neural Network and Artificial Neural Network for Rice Detection

Suherman, Endang (Unknown)
Hindarto, Djarot (Unknown)
Makmur, Amelia (Unknown)
Santoso, Handri (Unknown)



Article Info

Publish Date
01 Jan 2023

Abstract

Rice is a staple food for people in tropical countries. Indonesia is a country that needs a lot of rice for its people in providing food. This country has implemented various ways to plant rice properly. Many agricultural fields have implemented harvests up to three times a year, due to the role of technology which has helped a lot in agriculture. Planting to harvest already uses advanced technology and tools. A good rice harvest can improve the welfare of the surrounding community. Meanwhile with lots of rice products because many rice plants produce with lots of rice. The type of rice from different regions of origin, the yield of rice is also different from other regions of origin. But with advances in technology, it is possible to plant rice whose types of plants come from other regions. The rice sold to the public varies, so that people who are unfamiliar with the types of rice find it difficult to detect the types of rice. Machine learning is present in detecting various kinds of rice. Machine learning, especially deep learning can make better detection, because one of the deep learning methods works similar to the human brain. In the human brain there are millions or even billions of neurons. This research uses neural networks in experiments using public datasets. Experiments using Artificial Neural Networks achieve an training accuracy of 98.2%, loss: 0.2351. It takes about 10 minutes of training. Testing accuracy reaches accuracy: 96%, loss: 0.6641. By conducting experiments using the Convolution Neural Network, it achieves an accuracy of 99.3% and the training time requires around 18 hours. The purpose of this research is to classify the rice image dataset and detect the rice image.

Copyrights © 2023






Journal Info

Abbrev

sinkron

Publisher

Subject

Computer Science & IT

Description

Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial ...