Science and Technology Indonesia
Vol. 6 No. 3 (2021): July

The Ability of Composite Ni/Al-carbon based Material Toward Readsorption of Iron(II) in Aqueous Solution

Normah Normah (Magister Programme Graduate School of Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang-South Sumatra, Indonesia)
Neza Rahayu Palapa (Graduate School of Faculty Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang-South Sumatra, Indonesia)
Tarmizi Taher (Departement of Environmental Engineering, Faculty of Mathematics and Natural Sciences, Insitut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Hui, Jati Agung, Lampung 35365, Indonesia)
Risfidian Mohadi (Graduate School of Faculty Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang-South Sumatra, Indonesia)
Hasja Paluta Utami (Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia)
Aldes Lesbani (Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia)



Article Info

Publish Date
22 Jul 2021

Abstract

In this research, NiAl-LDH was synthesized using the coprecipitation method and modified with biochar and graphite to produce NiAlbiochar and NiAl-graphite composite materials. The adsorbent that has been synthesized is used for the application of adsorption of Fe(II) ions in aqueous solution. The resulting material was characterized by XRD (X-ray Diffraction) analysis, spectrophotometer FT-IR, BET analysis for determine the specific surface area and TG-DTA analysis. XRD diffractogram showed that the NiAl-Biochar and NiAl-graphite composite material had the diffraction pattern characteristic of the precursor. LDH that has been modified will have a larger surface area than the precursor. The surface area of NiAl-biochar reaches 438.942 m2/g and the surface area of NiAl-graphitereaches 21.595 m2/g. This composite material supports adsorbents with a large adsorption capacity to adsorb metals. Adsorption of Fe (II) using NiAl-Biochar and NiAl-graphite was stable for five regeneration cycles (<75.30%). The Fe(II) ion adsorption process tends to follow the Langmuir isotherm model which has a maximum capacity value (Qmax) of NiAl-Biochar composite material reaching 20 times with a value of 243.902 mg/g and the NiAl-graphite composite reaching 72.464 mg/g, so that the carbon-based composite material is considered effective. adsorbent to remove Fe(II) ion and can increase the stability of the structure for adsorption regeneration. The results of the analysis of thermodynamic parameters showed that the adsorption process was endothermic, tookplace spontaneously and the solid-liquid phase interface increased according to the increasing degree of disorder.

Copyrights © 2021






Journal Info

Abbrev

JSTI

Publisher

Subject

Biochemistry, Genetics & Molecular Biology Chemical Engineering, Chemistry & Bioengineering Environmental Science Materials Science & Nanotechnology Physics

Description

An international Peer-review journal in the field of science and technology published by The Indonesian Science and Technology Society. Science and Technology Indonesia is a member of Crossref with DOI prefix number: 10.26554/sti. Science and Technology Indonesia publishes quarterly (January, April, ...