International Journal of Electrical and Computer Engineering
Vol 13, No 3: June 2023

Detecting COVID-19 in chest X-ray images

Worapan Kusakunniran (Mahidol University)
Punyanuch Borwarnginn (Mahidol University)
Thanongchai Siriapisith (Mahidol University)
Sarattha Karnjanapreechakorn (Mahidol University)
Krittanat Sutassananon (Mahidol University)
Trongtum Tongdee (Mahidol University)
Pairash Saiviroonporn (Mahidol University)



Article Info

Publish Date
01 Jun 2023

Abstract

One reliable way of detecting coronavirus disease 2019 (COVID-19) is using a chest x-ray image due to its complications in the lung parenchyma. This paper proposes a solution for COVID-19 detection in chest x-ray images based on a convolutional neural network (CNN). This CNN-based solution is developed using a modified InceptionV3 as a backbone architecture. Self-attention layers are inserted to modify the backbone such that the number of trainable parameters is reduced and meaningful areas of COVID-19 in chest x-ray images are focused on a training process. The proposed CNN architecture is then learned to construct a model to classify COVID-19 cases from non-COVID-19 cases. It achieves sensitivity, specificity, and accuracy values of 93%, 96%, and 96%, respectively. The model is also further validated on the so-called other normal and abnormal, which are non-COVID-19 cases. Cases of other normal contain chest x-ray images of elderly patients with minimal fibrosis and spondylosis of the spine, whereas other abnormal cases contain chest x-ray images of tuberculosis, pneumonia, and pulmonary edema. The proposed solution could correctly classify them as non-COVID-19 with 92% accuracy. This is a practical scenario where non-COVID-19 cases could cover more than just a normal condition.

Copyrights © 2023






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...