So far APTIKOM as the Informatics and Computer Higher Education Association has provided many opportunities for registered members to participate in discussions on the development of science among fellow association members, access to various professional experts, as well as technical and non-technical guidelines in the field of education. With the various opportunities above, it is hoped that all members will support the activities of each member who has joined or has just joined so that a good association can be created. This study aims to find out about the problems that occur in APTIKOM, namely members who have registered as members but rarely renew their membership which results in data accumulation in APTIKOM. This research method uses the k-nn and naïve Bayes algorithms by using data sets from 2012 to 2022. The dataset used is APTIKOM member data and has 5 attributes namely name, gender, last education, institution and validation secret. To calculate the research test using a rapid miner. The purpose of this study is to predict whether in the following year there will be a membership renewal process for all APTIKOM members who have been recorded from 2012 to 2022. Furthermore, the results of this study have a different level of accuracy. Where for k-nn the resulting accuracy is 94.00% and for the result of naïve Bayes is 91.35%.
                        
                        
                        
                        
                            
                                Copyrights © 2023