Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa Dan Inovasi
Volume 5 Nomor 1 Tahun 2023

Analisis Sentiment Twitter Berbasis Grid Search Algorithm (GSA) Dengan Metode Support Vector Machine (SVM)

Dedi Wirasasmita (Sekolah Tinggi Teknologi Duta Bangsa)
Efi Anisa (Sekolah Tinggi Teknologi Duta Bangsa)



Article Info

Publish Date
31 Jan 2023

Abstract

Twitter is a social networking service that has undergone tremendous growth and is gaining worldwide popularity at an accelerated rate. Twitter allows for the expression of unbiased thoughts on a variety of issues and can assist businesses in providing public feedback on well-known brands and items. Twitter is having trouble with good and negative answers. Researchers evaluated English-language tweets to determine the proportion of positive and negative replies to popular companies and items. This study will explore Twitter sentiment analysis utilizing the Grid Search Algorithm (GSA) and the support vector machine (SVM) technique. GSA is utilized by the feature selection model to optimize the classification procedure. In this work, training data and testing data are required to do sentiment analysis. Sanders Twitter 0.2 utilizes a dataset consisting of tweets retrieved from Twitter using the search terms @apple, #google, #microsoft, and #twitter. The collected dataset was manually annotated and included 654 negatives, 570 positives, 2503 neutrals, and 1786 irrelevant entries. Data are loaded, tokenized, weighted, preprocessed, filtered, and classified to conduct a sentiment analysis. The application's sentiment analysis achieved a degree of accuracy of up to 79% based on testing. The ratio of neutral and bad tweets on data sandboxes tends to be greater than the percentage of positive tweets, hence optimization rather than accuracy is obtained.

Copyrights © 2023






Journal Info

Abbrev

asiimetrik

Publisher

Subject

Civil Engineering, Building, Construction & Architecture Computer Science & IT Electrical & Electronics Engineering Industrial & Manufacturing Engineering

Description

Jurnal ini mempublikasikan artikel ilmiah berbasis penelitian, studi kasus, articles review, rekayasa dan inovasi yang mencakup teoritis maupun praktis serta pengembangannya. Topik artikel ilmiah yang dimuat ASIIMETRIK mencakup bidang Arsitektur, Teknik Sipil, Teknik Industri, Teknik Informatika, ...