JOIV : International Journal on Informatics Visualization
Vol 7, No 1 (2023)

Batik Images Retrieval Using Pre-trained model and K-Nearest Neighbor

Agus Eko Minarno (Universitas Muhammadiyah Malang, Malang, Indonesia)
Muhammad Yusril Hasanuddin (Universitas Muhammadiyah Malang, Malang, Indonesia)
Yufis Azhar (Universitas Muhammadiyah Malang, Malang, Indonesia)



Article Info

Publish Date
06 Feb 2023

Abstract

Batik is an Indonesian cultural heritage that should be preserved. Over time, many batik motifs have sprung up, which can lead to mutual claims between craftsmen. Therefore, it is necessary to create a system to measure the similarity of a batik motif. This research is focused on making Content-Based Image Retrieval (CBIR) on batik images. The dataset used in this research is big data Batik images. The authors used transfer learning on several pre-trained models and used Convolutional Neural Network (CNN) Autoencoder from previous studies to extract features on all images in the database. The extracted features calculate the Euclidean distance between the query and all images in the database to retrieve images. The image closest to the query will be retrieved according to the number of r, namely 3, 5, 10, or 15. Before the image is retrieved, the retrieval system is used to re-ranked with K-Nearest Neighbor (KNN), which classifies the retrieved image. The results of this study prove that MobileNetV2 + KNN is the best model in terms of Image Retrieval Batik, followed by InceptionV3 and VGG19 as the second and third ranks. Moreover, CNN Autoencoder from previous research and InceptionResNetV2 are ranked fourth and fifth. In this study, it was also found that the use of KNN re-ranking can increase the precision value by 0.00272. For further research, deploying these models, especially for MobileNetV2 is an approach for seeing a major impact on batik craftsmanship for decreasing batik motif plagiarism.

Copyrights © 2023






Journal Info

Abbrev

joiv

Publisher

Subject

Computer Science & IT

Description

JOIV : International Journal on Informatics Visualization is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of Computer Science, Computer Engineering, Information Technology and Visualization. The journal publishes state-of-art ...