IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 12, No 3: September 2023

An integrated hybrid metaheuristic model for the constrained scheduling problem

Bidisha Roy (St. Francis Institute of Technology)
Asim Kumar Sen (Institute of Marine Engineers)



Article Info

Publish Date
01 Sep 2023

Abstract

Several problems in the domains of project management (PM) and operations research (OR) can be classified as optimization problems which are classically non-deterministic polynomial-time hard (NP-hard). One such highly important problem is the resource constrained project scheduling problem (RCPSP). The main aim of this problem is to find a schedule of the lowest and optimum makespan to complete a project, which involves resource as well as precedence constraints. But, being classically NP-hard, the RCPSP requires exponential computational resources as the problem complexity increases. Thus, approximate techniques like computational intelligence (CI) based approaches provide better chances of finding near optimal solutions. This paper presents the usage of a hybrid technique using the phases of teaching learning-based optimization (TLBO) metaheuristic integrated with operators like crossover and mutation from the genetic algorithm (GA). An integrated hybrid using TLBO and 2-point crossover is applied in the teacher and learner phases to the discrete RCPSP problem. Further, to diversify the population, and enhance global search, the mutation operator is applied. The proposed model is extensively tested on well-known benchmark test instances and has been compared with other seminal works. The encouraging results make evident the efficiency of the provided solution for the RCPSP problem of varying magnitudes.

Copyrights © 2023






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...