IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 12, No 3: September 2023

Classification of customer churn prediction model for telecommunication industry using analysis of variance

Ronke Babatunde (Kwara State University)
Sulaiman Olaniyi Abdulsalam (Landmark University)
Olanshile Abdulkabir Abdulsalam (Landmark University SDG 9 (Industry, Innovation and Infrastructure Research Group))
Micheal Olaolu Arowolo (Landmark University)



Article Info

Publish Date
01 Sep 2023

Abstract

Customer predictive analytics has shown great potential for effective churn models. Thriving in today's telecommunications industry, discerning between consumers who are likely to migrate to a competitor is enormous. Having reliable predictive client behavior in the future is required. Machine learning algorithms are essential to predict customer turnovers, and researchers have proposed various techniques. Churn prediction is a problem due to the unequal dispersal of classes. Most traditional machine learning algorithms are ineffective in classifying data. Client cluster with a higher risk has been discovered. A support vector machine (SVM) is employed as the foundational learner, and a churn prediction model is constructed based on each analysis of variance (ANOVA). The separation of churn data revealed by experimental assessment is recommended for churn prediction analysis. Customer attrition is high, but an instantaneous support can ensure that customer needs are addressed and assess an employee's capacity to achieve customer satisfaction. This study uses an ANOVA with a SVM, classification in analyzing risks in telecom systems It may be determined that SVM provides the most accurate forecast of customer turnover (95%). The projected outcomes will allow other organizations to assess possible client turnover and collect customer feedback.

Copyrights © 2023






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...