International Journal of Industrial Optimization (IJIO)
Vol. 4, No. 1 (2023)

Using general-purpose integer programming software to generate bounded solutions for the multiple knapsack problem: a guide for or practitioners

Emre Shively-Ertas (Kutztown University)
Yun Lu (Kutztown University)
Myung Song (Kutztown University)
Francis Vasko (Kutztown University)



Article Info

Publish Date
08 Mar 2023

Abstract

An NP-Hard combinatorial optimization problem that has significant industrial applications is the Multiple Knapsack Problem. If approximate solution approaches are used to solve the Multiple Knapsack Problem there are no guarantees on solution quality and exact solution approaches can be intricate and challenging to implement.  This article demonstrates the iterative use of general-purpose integer programming software (Gurobi) to generate solutions for test problems that are available in the literature. Using the software package Gurobi on a standard PC, we generate in a relatively straightforward manner solutions to these problems in an average of less than a minute that are guaranteed to be within 0.16% of the optimum.  This algorithm, called the Simple Sequential Increasing Tolerance (SSIT) algorithm, iteratively increases tolerances in Gurobi to generate a solution that is guaranteed to be close to the optimum in a short time. This solution strategy generates bounded solutions in a timely manner without requiring the coding of a problem-specific algorithm. This approach is attractive to management for solving industrial problems because it is both cost and time effective and guarantees the quality of the generated solutions.  Finally, comparing SSIT results for 480 large multiple knapsack problem instances to results using published multiple knapsack problem algorithms demonstrates that SSIT outperforms these specialized algorithms.

Copyrights © 2023






Journal Info

Abbrev

ijio

Publisher

Subject

Decision Sciences, Operations Research & Management Engineering Industrial & Manufacturing Engineering

Description

The Journal invites original articles and not simultaneously submitted to another journal or conference. The whole spectrums of Industrial Engineering are welcome but are not limited to Metaheuristics, Simulation, Design of Experiment, Data Mining, and Production System. 1. Metaheuristics: ...