Bulletin of Electrical Engineering and Informatics
Vol 12, No 4: August 2023

Classification of 27 heart abnormalities using 12-lead ECG signals with combined deep learning techniques

Atiaf A. Rawi (Gezira University)
Murtada Khalafallah Elbashir (Jouf University)
Awadallah M. Ahmed (Gezira University)



Article Info

Publish Date
01 Aug 2023

Abstract

An electrocardiogram (ECG) machine with a standard 12-lead configuration is the primary clinical technique for diagnosing abnormalities in heart function. Automated 12-lead ECG machines have the capacity to screen the general population and provide second opinions for physicians. However, expertise and time are required for manual ECG interpretation. Therefore, computer-aided diagnoses are of interest to the medical community. Hence, this study aims to build a deep learning (DL) model with an end-to-end structure that can categorize 12-lead ECG results into 27 different disorders. We use multivariate time-series data to construct a novel end-to-end DL model (based on combined convolutional neural networks (CNNs), long short-term memory, gated recurrent units, and a deep residual network structure) for feature representations and determining spatial relations among deep features. In addition, a dataset of 43,101 classified standard ECG recordings was collected from six different sources to guarantee the model’s ability to generalize and alleviate data divergence. As a result, the residual network-based model obtained promising outcomes and an accuracy of 0.97. According to the experimental data, it outperforms other methods.

Copyrights © 2023






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...