Bulletin of Electrical Engineering and Informatics
Vol 12, No 4: August 2023

Wind power forecasting model based on linguistic fuzzy rules

Mohammed Moujabbir (Sultan Moulay Slimane University)
Khalid Bahani (Hassan II University)
Mohammed Ramdani (Hassan II University)
Hamza Ali-Ou-Salah (Hassan II University)



Article Info

Publish Date
01 Aug 2023

Abstract

The design and operationalization of a wind energy system is mainly based on wind speed and wind direction, theses parameters depend on several geographic, temporal, and climatic factors. Fluctuating factors such as climate cause irregularities in wind energy production. Therefore, wind power forecasting is necessary before using wind power systems. Furthermore, in order to make informed decisions, it is necessary to explain the system's predictions to stakeholders. The explainable artificial intelligence (XAI) provides an interactive interface for intelligent systems to interact with machines, validate their results, and trust their behavior. In this paper, we provide an interpretable system for predicting wind energy using weather data. This system is based on a two-step method for fuzzy rules learning clustering (FRLC). The first step uses subtractive clustering and a linguistic approximation to extract linguistic rules. The second step uses linguistic hedges to refine linguistic rules. FRLC is compared to with artificial neural network (ANN), random forest (RF), k-nearest neighbors (K-NN), and support vector regression (SVR) models. The experimental results show that the accuracy of FRLC is acceptable regarding the comparison models and outperform them in terms of the interpretability. In parallel with prediction, FRLC model provides a set of linguistic fuzzy rules that explain the obtained results to the stakeholders.

Copyrights © 2023






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...