Journal of Applied Materials and Technology
Vol. 4 No. 1 (2022): September 2022

High-Performance Aqueous Electrolyte Symmetrical Supercapacitor using Porous Carbon Derived Cassava Peel Waste

Erman Taer (Department of Physics, Faculty of Mathematical and Natural Sciences, University of Riau)
Harahap Eva Wahyuni (Department of physics, Faculty of Mathematics and Natural Sciences, University of Riau)
Apriwandi Apriwandi (Department of physics, Faculty of Mathematics and Natural Sciences, University of Riau)
Taslim Rika (Department of Industrial Engineering, Faculty of Sciences Technology, Islamic State University of Sultan Syarif Kasim Riau)



Article Info

Publish Date
20 Mar 2023

Abstract

Electrolytes have been generally recognized as one of the most important components in enhancing the electrochemical performance of supercapacitors. On the other hand, aqueous electrolytes are considered prime candidates for the development of the next generation of symmetric supercapacitors due to their low-cost, environmentally friendly, high ionic conductivity, fine ionic size, and high capacitance. Herein, the symmetrical supercapacitor of the sustainable porous carbon-based electrode material was confirmed through various aqueous electrolytes consisting of neutral, basic, and acidic Na2SO4, KOH, and H2SO4. Activated carbon is obtained from high potential biomass sources of cassava peel waste. Activated carbon synthesis was performed with a comprehensive approach in order to obtain abundant pore structure, high porosity, and improved wettability through a combination of high-temperature chemical and physical activation. in addition, the electrode material is designed to resemble a solid disc without the addition of a synthetic binder. The evaluation of the disc dimensions showed high porosity in the obtained activated carbon. Furthermore, the symmetrical supercapacitor of the optimized electrode material exhibit excellent specific capacitances of 112, 150, and 183 F g-1 at 1 mV s-1 in the electrolytes Na2SO4, KOH, and H2SO4, respectively. In addition, the highest rate capability of 70% was confirmed in the H2SO4 acid electrolyte. Moreover, their coulombic efficiency can be maintained around 89% with low equivalent series resistance 0.21-0.42 ?. Therefore, the activated carbon-based supercapacitor symmetric cell device from cassava peel shows high performance for developing high-performance supercapacitor applications with guaranteed stability in aqueous electrolytes.

Copyrights © 2022






Journal Info

Abbrev

jamt

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Civil Engineering, Building, Construction & Architecture Engineering Mechanical Engineering

Description

Journal of Applied Materials and Technology (JAMT) is aimed at capturing current development and initiatives in applied materials and technology. JAMT showcases innovative applied materials and technology, providing an opportunity for science, transfer and collaboration of technology. JAMT focuses ...