International Journal of Advanced Science Computing and Engineering
Vol. 2 No. 3 (2020)

Performance Comparison of Apriori, ECLAT and FP-Growth Algorithm for No Biological Data Genes for Association Rule Learning

Anuar, Anies Nurfazlin (Unknown)
Kasim, Shahreen (Unknown)
Hendrick, - (Unknown)



Article Info

Publish Date
10 Oct 2020

Abstract

This project is carried out to study the performance comparison of Apriori Algorithm, ECLAT Algorithm and FP-Growth Algorithm for no biological data genes. There are many genes with no biological data, but for this project we have chosen 4 types of no biological data genes. No biological data genes are genes that have no specific data about themselves such as location, behaviour and function of the genes. Association Rule Learning is a technique implementing big data in finding frequent item-sets. Frequent item-sets are items that occur frequently in the database. The performance of these three algorithms is compared through time efficiency and the ability to process small and large datasets. After the comparison, we can conclude that FP-Growth algorithm is the fastest algorithm for small data-set and Apriori algorithm and ECLAT algorithm takes lesser time to generate the frequent item-sets compared to FP-Growth algorithm.

Copyrights © 2020






Journal Info

Abbrev

IJASCE

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering

Description

The journal scopes include (but not limited to) the followings: Computer Science : Artificial Intelligence, Data Mining, Database, Data Warehouse, Big Data, Machine Learning, Operating System, Algorithm Computer Engineering : Computer Architecture, Computer Network, Computer Security, Embedded ...