eProceedings of Engineering
Vol 3, No 2 (2016): Agustus, 2016

Perbandingan Dan Analisis Support Vector Machine Dan Adaptive Neuro-fuzzy Inference System Untuk Klasifikasi Genre Musik

Ridwan Firdaus (Telkom University)
Rita Magdalena (Telkom University)
I Nyoman Apraz Ramatryana (Telkom University)



Article Info

Publish Date
01 Aug 2016

Abstract

Dalam tugas akhir ini, dilakukan penelitian bagaimana mengembangkan klasifikasi genre yang memiliki kualitas yang baik dalam ketepatan klasifikasinya dengan menggunakan ciri konten frekuensi dan klasifikasi menggunakan metode Support Vector Machine dan Adaptive Neuro Fuzzy Inference System. Dari skenario pengujian terhadap paramater Jenis dan Orde Filter didapat parameter terbaik yaitu Jenis filter Butterworth dengan orde 3. Setelah dilakukan pengujian terhadap klasifikasi 4 genre lagu yaitu m e t a l , b l u e s , pop dan dance, akurasi tertinggi adalah 85% dan 86% dengan SVM dan 87% dengan ANFIS, untuk jumlah data acuan 50 tiap-tiap genre, jumah data uji 50 tiap-tiap genre, iterasi ANFIS 20, parameter SVM jenis kernel polynomial, kerneloption = 1, C = 10 dan lambda = 1e-1. Kunci : Klasifikasi, genre musik, Support Vector Machine, Adaptive Neuro Fuzzy Inference System

Copyrights © 2016






Journal Info

Abbrev

engineering

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Merupakan media publikasi karya ilmiah lulusan Universitas Telkom yang berisi tentang kajian teknik. Karya Tulis ilmiah yang diunggah akan melalui prosedur pemeriksaan (reviewer) dan approval pembimbing ...