eProceedings of Engineering
Vol 3, No 1 (2016): April, 2016

Penentuan Fitur Supervised Learning Dalam Identifikasi Kalimat Sitasi Pada Makalah Ilmiah

Rian Putra Mantovani (Telkom University)
Yuliant Sibaroni (Telkom University)
Annisa Aditsania (Telkom University)



Article Info

Publish Date
01 Apr 2016

Abstract

Kalimat sitasi berperan penting dalam penulisan jurnal ilmiah. Kalimat sitasi dapat diidentifikasi dengan mengekstraksi fiturnya. Pada penelitian ini digunakan 5 fitur utama dan juga akan dikombinasikan. Fitur-fitur yang kita gunakan adalah unigram, bigram, proper noun, cue phrase, dan pronoun. Untuk mengklasifikasi kita menggunakan Naive Bayes (NB) dan support vector machine (SVM). Penelitian ini menggunakan 500 makalah ilmiah yang diambil dari acl-arc. Hasil dari penelitian ini adalah fitur yang terbaik untuk mengidentifikasi kalimat sitasi adalah “Proper Noun, dan Cue Phrase” dengan 59,069% f-measure, dan 92,157% akurasi, jika menggunakan naive bayes, dan 51,234% f-measure, dan 92,503% akurasi jika menggunakan SVM. Kata Kunci —supervised learning, ekstraksi fitur, identifikasi, kalimat sitasi

Copyrights © 2016






Journal Info

Abbrev

engineering

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Merupakan media publikasi karya ilmiah lulusan Universitas Telkom yang berisi tentang kajian teknik. Karya Tulis ilmiah yang diunggah akan melalui prosedur pemeriksaan (reviewer) dan approval pembimbing ...