eProceedings of Engineering
Vol 3, No 2 (2016): Agustus, 2016

Prediksi Penyakit Menggunakan Algoritma Differential Evolution (de) Dan Least Square Support Vector Machine (lssvm) Untuk Data Berdimensi Tinggi

Merry Sofhia Tambunan (Telkom University)
Fhira Nhita (Telkom University)
Danang Triantoro Murdiansyah (Telkom University)



Article Info

Publish Date
01 Aug 2016

Abstract

Penyakit merupakan salah satu penyebab kematian tertinggi bagi masyarakat. Beberapa penyakit dapat dikategorikan sebagai penyakit mematikan. Penyakit colon tumor atau tumor usus dan leukimia merupakan beberapa penyakit yang berbahaya dan mematikan. Masyarakat terkadang tidak menyadari bahwa sedang mengidap beberapa penyakit berbahaya ini. Berdasarkan permasalahan tersebut diperlukan adanya suatu sistem prediksi penyakit colon tumor dan leukimia. Pada tugas akhir ini digunakan algoritma Differential Evolution (DE) dan Least Square Support Vector Machine (LSSVM) dalam memprediksi penyakit colon tumor dan leukemia. Data yang digunakan pada tugas akhir ini merupakan data penyakit dimensi tinggi, dimana akan dilakukan preprocessing data menggunakan PCA sehingga diperoleh data dengan dimensi baru yang lebih sedikit. Data yang sudah direduksi kemudian akan dimasukan ke dalam algoritma DE, dimana algoritma tersebut akan melakukan serangkaian proses evolusi. DE bertujuan untuk mencari parameter LSSVM yang optimal. Parameter tersebut kemudian akan digunakan pada metode klasifikasi LSSVM. Proses ini dilakukan untuk mendapatkan klasifikasi dari penyakit colon tumor dan leukimia. Dari hasil pengujian pada algoritma DE dan LSSVM diperoleh solusi optimal dengan akurasi 90.4762% untuk colon tumor dan 87.5 % untuk leukemia. Kata kunci: data dimensi tinggi, PCA, Differential Evolution (DE), Least Square Support Vector Machine (LSSVM).

Copyrights © 2016






Journal Info

Abbrev

engineering

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Merupakan media publikasi karya ilmiah lulusan Universitas Telkom yang berisi tentang kajian teknik. Karya Tulis ilmiah yang diunggah akan melalui prosedur pemeriksaan (reviewer) dan approval pembimbing ...