eProceedings of Engineering
Vol 4, No 3 (2017): Desember, 2017

Prediksi Volatilitas Saham Perusahaan Pertambangan Batu Bara Dengan Metode Artificial Neural Network - Generalized Autoregressive Conditional Heteroscedasticity

Wayan Satriawan (Telkom University)
Rian Umbara (Telkom University)
Aniq Rohmawati (Telkom University)



Article Info

Publish Date
01 Dec 2017

Abstract

Saham adalah salah satu jenis surat berharga yang digunakan sebagai tanda penyerta modal seseorang atau badan usaha dalam suatu perusahaan. Sebelum berinvestasi, penting bagi investor untuk mengetahui seberapa besar risiko dan return dari saham tersebut. Volatilitas adalah sebuah metode statistik untuk mengukur fluktuasi harga saham dalam periode tertentu. Salah satu model time-series terbaik dalam memprediksi volatilitas harga saham adalah Generalized Autoregressive Conditional Heteroscedasticity (GARCH). Pengoptimasian metode dilakukan untuk meningkatkan prediksi volatilitas. Metode yang digunakan untuk mengoptimasi model GARCH adalah model Artificial Neural Networks (ANN). Pada Tugas Akhir ini menentukan akurasi model digunakan metode RMSE dan MAE. Berdasarkan hasil analisis model ANN-GARCH lebih baik dibandingkan model GARCH(1,1) dalam akurasi model. Hasil RMSE dan MSE dengan model GARCH adalah RMSE = 2.4867e-06 dan MAE = 7.9885e-08, sedangkan dengan model ANN-GARCH mendapatkan hasil terbaik RMSE = 3.5016e-07 dan MAE = 1.1249e-08. Kata kunci : Saham, Volatilitas, Generalized Autoregressive Conditional Heteroscedasticity, Artificial Neural Networks, ANN-GARCH

Copyrights © 2017






Journal Info

Abbrev

engineering

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Merupakan media publikasi karya ilmiah lulusan Universitas Telkom yang berisi tentang kajian teknik. Karya Tulis ilmiah yang diunggah akan melalui prosedur pemeriksaan (reviewer) dan approval pembimbing ...