eProceedings of Engineering
Vol 6, No 1 (2019): April 2019

Klasifikasi Citra Multi-kelas Menggunakan Convolutional Neural Network

Kamal Hasan Mahmud (Telkom University)
Adiwijaya Adiwijaya (Telkom University)
Said Al Faraby (Telkom University)



Article Info

Publish Date
01 Apr 2019

Abstract

Abstrak ILSVRC (ImageNet Large Scale Visual Recognition Challenge) adalah suatu kompetisi tahunan yang melombakan klasifikasi basis data gambar yang ada pada ImageNet yang memiliki 1000 kelas dan setiap tahunnya terdapat berbagai macam arsitekturjaringan convolutional neural network (CNN) yang menjadi state of the art. CNN digunakan karena metode ini bekerja dengan sangat baik dengan volume data yang besar. Dari 1000 kelas, akan diambil 100 kelas yang akan dijadikan dataset penelitian untuk mengetahui strategi pembelajaran seperti apa pada CNN yang dapat memiliki performa terbaik dengan berbagai skenario. Skenario terbaik didapatkan dengan melakukan training dengan ukuran gambar yang kecil, lalu melakukantraining kembalidenganmemperbesarukuran gambar. Skenarioinimendapatkanakurasi sebesar 75.82%, akurasi yang cukup tinggi untuk model yang dapat mengklasifikasikan 100 kelas. Skenario ini juga memiliki performa yang paling baik dalam klasifikasi keseluruhan berdasarkan ukuran evaluasi confusionmatrix.Katakunci: convolutionalneuralnetwork,multi-kelas,klasifikasi,gambarAbstract ILSVRC (ImageNet Large Scale Visual Recognition Challenge) is a yearly competition that competes on classifyingImageNetimagedatabasethathas1000classesandeveryyear,anewarchitectureofconvolutional neural network (CNN) that becomes a state of the art emerge. CNN is used because this method works very well on a large volume of data. From 1000 classes available on ImageNet, 100 class will be used in thisresearchdatasettoknowwhichlearningstrategyforCNNperformedbestinthevaryingscenario. The best scenario is achieved by training the image in smaller resolution then training it again with a larger resolution. This scenario achieved an accuracy of 75.82%, it’s quite high for a model that can classify 100 class. It’salsoperformedbestaccordingtotheevaluationoftheconfusionmatrixgeneratedbyeachmodel.Keywords: convolutionalneuralnetwork,multi-class,classification,image

Copyrights © 2019






Journal Info

Abbrev

engineering

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Merupakan media publikasi karya ilmiah lulusan Universitas Telkom yang berisi tentang kajian teknik. Karya Tulis ilmiah yang diunggah akan melalui prosedur pemeriksaan (reviewer) dan approval pembimbing ...